

Journal of Arid Agriculture

J. Arid Agric. 2024, Vol. 25 (2): 93 - 102

Available Online at www.jaaunimaid.ng
Copyright © 2024 Faculty of Agriculture
University of Maiduguri, Maiduguri, Nigeria
0189-7551

EVALUATION OF BIRD'S SPECIES DIVERSITY IN BODEL FOREST OF GASHAKA GUMTI NATIONAL PARK, NIGERIA

M.G. Saka*, G.S. Mamman and A. Adedotun

Department of Forestry and Wildlife Management, Faculty of Agriculture, Modibbo Adama University, Yola, Nigeria

ABSTRACT: The study evaluated the bird's species diversity in Bodel forest reserve of Gashaka Gumti National Park (GGNP). The persistent decline in birds' species population and their diversity posed a great challenge to its conservation, hence the need for the study in the location. Systematic sampling method was employed, in which three (3) transects of 1 km in length were laid at an interval of 200 m apart in the study site. Species of bird sighted along the transect were observed and recorded. Two diversity indices, Shannon-Weiner's and Simpson were used to evaluate the bird's species diversity. The species evenness was determined using evenness equation E = H'/Ln(S). Likewise, means, standard deviation and Coefficient of variation was estimated. The results on bird's species distribution revealed a total of 788 birds, belonging to 73 species and 26 families in the study area. Lunchura cucullata had the highest frequency of 82 birds (10.4%), followed by Ploceus cuculatus with 50 birds (6.3%), while the least frequency of 1(0.1%) was recorded for Eliminilongi cauda. The two diversity indices revealed that bird species in Bodel forest reserve of Gashaka Gumti National Park are highly diverse. Simpson's index gave a value of 0.97, while Shannon-Weinner's index gave a value of 3.79 of species diversity in the reserve. T-test conducted shows that the two indices were significant in measuring bird's species diversity, but, Shannon-Weiner's index is mostly preferred due to its lower mean standard error (0.005). The study concludes that Bodel Forest reserve of Gashaka Gumti National Park is capable of sustaining a large population of bird species, if human interference is curtailed. Since birds occupy many tropic levels in a food chain, their occurrence should be protected and conserved as they are of helpful in environmental health indicator, pollinators, seed dispersal and as agent of pest control.

Keywords: Species diversity, Population, Indices, Protected, Distribution

INTRODUCTION

Bird's species are undergoing rapid declines, understanding the factors driving these declines is hindered by missing information about migratory connectivity and the lack of data to quantify environmental processes across the annual cycle (Rushing *et al.*, 2016). Habitat loss and climate change have been attributed to the declines in wood thrush breeding abundance (Runge *et al.*, 2005). For example, high-abundance core breeding populations appear to be more limited by habitat loss, whereas low-abundance, peripheral populations appear to be limited by climate-driven seasonal interactions. Apart from this, there are other mechanisms and factors such as predation, intra- and inter-specific interactions, competition for food, environmental and spatial factors may affect their distribution and permanence. (Püttker *et al.*, 2015). Understanding the processes that contribute to the distribution and diversity of birds species is still a challenge in ecological studies.

The rapid increase in human population has diversely affected diversity around the globe (Blom *et al.*, 2004). The negative effects of this increase include pollution, climate change, deforestation, habitat loss, and invasion of exotic species (Scanes, 2018).

Birds are good environment indicators and help to identify priority areas for conservation (Galgani *et.al*, 2010). Metrics such as species currently inhabiting any specific area, their historic distribution records, and the levels of threat to the species aid in protection efforts (Myers *et al.*, 2000). These threats are leading species toward extinction (Altaf, 2016). Thus, the project was designed determine the diversity and distribution of birds in different habitats.

Birds are organisms with high dispersal ability, that participate in many biological interactions and are usually highly faithful to specific habitats (Van Houtan *et al*,2012; Santos, 2004). In addition, birds make up the most diverse group of terrestrial vertebrates, comprising species that are excellent environmental indicators that respond quickly to subtle changes in the environment (Peter, 2002). Thus, understanding the biotic and abiotic mechanisms that affect the distribution of bird species may play a key role in the discussion of the processes that

^{*}Corresponding Author's email: sakmof@yahoo.com

contribute to the establishment and diversity of species. The Climate, particularly the dry and rainy seasons clearly affects the abundance of food resources, where rainy seasons have greater environmental complexity and higher supply and availability of resources (Develey and Peres, 2000). Climate is a key environmental variable for the occurrence and abundance of birds in the landscape, in both time and/or space (Van Houtan *et al.*, 2012; Lees *et al.*, 2014). Also, variables such as humidity, solar radiation and air temperature affect the metabolic rate of avian species, producing different levels of physiological responses (Porter and Gates, 1969), thus influencing the egg hatching rates in birds, where high temperatures associated with low humidity ranges can lead to reduced reproductive success (Boleli and Quiiroz, 2012). Birds help in the stability of an ecosystem by dispersing seeds and pollination of plants.

The changes in climatic conditions also puts many bird species at risk of extinction, even those currently considered safe (Birds life, (2004). With a global mean surface temperature increase of 1-2 °C above preindustrial levels, many unique and threatened ecological systems will be at risk and numerous species will face extinction (Noble *et al.*, 2005). Precipitation, along with temperature, is also especially likely to influence the behaviour of migratory birds. It is expected to affect their decision to depart for migration indirectly by acting on food availability and birds' consequent ability to build up energy reserves. Drought in critical stopover areas for migratory birds affects their ability to refuel on water and prey before crossing barriers such as deserts (Mazumder, 2014). The focus of this study is to evaluate the status of the birds species and their diversity in Bodel forest reserve of Gashaka Gumti National Park for conservation purpose.

MATERIALS AND METHODS

Study Area

Gashaka Gumti National Park is the largest and most diverse park in Nigeria, covering an area of approximately 6,671sq. Km, and is split between Adamawa and Taraba States. It's located in the Northeast of Nigeria between latitudes 6° 55' and 8° 05'N, and between longitudes 11°11' and 12°13'E, with the Federal Republic of Cameroon on the eastern border (Figure 1). The park's name was derived from two of the region's oldest and most historic settlements: Gashaka village in Taraba State, and Gumti village in Adamawa State. Gashaka Gumti National Park was created (along with other seven national parks) by Decree No. 36 of August, 1991, and repealed by Decree No. 46 of 1999 (now Act) by the merging of Gashaka Game reserve with Gumti Game Reserve (Marguba, 2002). The pattern of climatic zones in the study area is distorted by the influence exerted by highland areas that are located throughout the region and beyond (Pepeh and Nicholas, 2002). This results in increased rainfall on the crests and western flanks of these mountain ranges and low rain shadow to the east. Annual rainfall within the park ranges from 1200mm in the north to 3000mm in the southern region. Wet season is normally experienced from April to November, and dry season from December to March. In December period, there is always a low temperature at night time, and ranges from 10-15 °C, while, in March and April, temperature is as high as 400 per daytime. Temperature can be much cooler at higher altitudes and during the harmattan period that occurs from November to March (Pepeh and Nicholas, (2002). The region can be divided into two major physiographic provinces. The plains of the Benue valley which lie to and north of the region, predominantly 300m above sea level and the Adamawa Highlands situated to the south and East of the park (Adebayo and Zemba, 2020)

Method of Data Collection

The data for this study were collected from September to December 2021. Systematic sampling technique was adopted for data collection. Three (3) lines transect T1, T2 and T3 of one (1) km in length was laid at an interval of 200 m across the study site. All species of bird sighted along each transect with the aid of binoculars and naked eyes were identified and recorded. Two to three minutes of keen observation was usually done on a line transects which allowed the birds acclimate to the presence of human. Also, physical features like the colour of the head, colour of the neck, colour of the wings and colour of the tail were also observed. The counts were done as early as 6.00 am, because birds are warm blooded and are active almost all the time. Each line transects was visited for five (5) times during period of the study. Information on climatic factors of the study area was collected, and this was used for predicting the population of the bird species in the study area.

Data Analysis

Descriptive and inferential statistics such as frequency and tables were used for the data analyses.

Estimation of Diversity Indices and Equitability

Diversity Index was estimated using Shannon diversity index (H') (Equation 1) and Simpson's diversity index (Equation 2), while, species equitability (evenness) (Equation 3) was estimated using Pielou's measure of species evenness.

- $H' = -\sum P_i Ln P_i$ $D = 1 \left[\frac{n(n-1)}{N(N-1)}\right]$ 1. Equation (1)
- 2. Equation (2)
- E = H'/Ln(S)3. Equation (3)

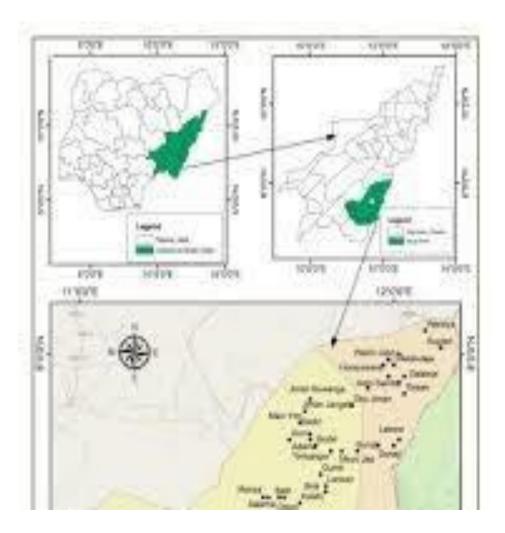


Fig 1: Map of Gashaka Gumti National Park Showing the Study Area Source: (Warren, 2004)

Comparison of the Species Diversity Indices

Student t-test (Eqn. 4) was used to compare the significant effect of the two diversity indices on the bird's population, and is of the form:

$$t = \frac{\overline{sh} - \overline{sm}}{\sqrt{Sp(h,sh,sm(\frac{1}{nsh} + \frac{1}{nsm})}}$$
Equation (4)

Where;

t = student t-test

 \overline{sh} = mean of number of Shannon

sm = mean of number of Simpson's

Sp = pooled variance nsm, nsh = number of observation

RESULTS AND DISCUSSION

Birds Species Distribution in Bodel Forest of Gashaka Gumti National Park

A total of 788 birds, belonging to 73 species and 26 families were identified in the study area. All the birds species enumerated were subjected to six different class intervals of 10 (Appendix I). Out of the 788 birds sighted, almost 33.6% birds fell into 11- 20 class interval, this was followed by class 1- 10 with 24.6% birds species, while the least birds species was (8.8%) and felled into class interval greater than 50. (Table 1). The estimated mean and standard deviation of the bird species in Bodel forest reserve of GGNP was estimated as 75.5 and 23.08 respectively, while the coefficient of variation was 30.5% (Table 1). The result of the study revealed that *Lunchura cucullata species* had the highest frequency of 82 birds (10.41%), which was followed by *Ploceus cuculatus* with a frequency of 50 birds (6.35%), while the least frequency of 1(0.13%) was recorded for *Eliminilongi cauda* (Table 2). The rank abundance curve (Figure 2) plotted revealed a decline in number of birds species from lower class to a higher class, this indicates that there was no evenness in birds species distribution in Bodel forest of Gashaka Gumti National Park. The number of bird's species and family sighted in Bodel forest is higher than that reported by Issa, (2019) in his study, in which 33 birds' species belonging to 24 families were recorded. This indicated that Bodel forest is highly diverse in terms of bird's species diversity than that of Sharkia Governorate in Egypt.

Table 1: Frequency Class Distribution of Birds specie in GGNP

Class interval	Frequency	No. of species	Mean	Standard	Coefficient of
		per class		Deviation	Variation (%)
1 – 10	194 (24.6)	46			
11 - 20	265 (33.6)	19			
21 - 30	69 (8.8)	3			
31 - 40	80 (10.2)	2	75.50	23.08	30.51
41 - 50	98 (12.4)	2			
>□50	82 (10.4)	1			
Total	788(100)	73			

Value in parenthesis is in percentage (%)

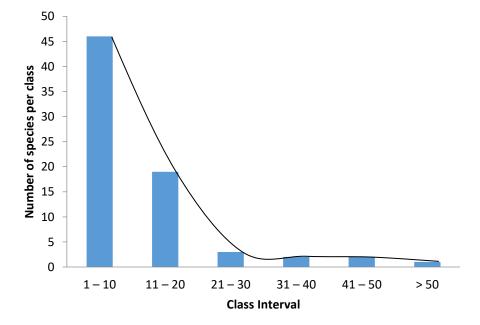


Figure 2: Rank abundance curve for Bird's species in Gashaka Gumti National Park

Table 2: Distribution of Birds Species in Bodel Forest, Gashaka Gumti National Park

S/No.	Species	Frequency	Percentage (%)
1	Acrocephalus rufescens	3	0.380711
2	Agapornus pullarius	11	1.395939
3	Antichromus minutes	5	0.634518
4	Apalis nigriceps	7	0.888325
5	Apus horus	20	2.538071
6	Arthreptes rectirostris	14	1.77665
7	Ati capilla	8	1.015228
8	Baeopogon indicator	2	0.253807
9	Bubulus ibis	3	0.380711
10	Buteo buteo	2	0.253807
11	Centropus senegalensis	3	0.380711
12	Chalcomitra rubessers	23	2.918782
13	Cinnyris cupreus	11	1.395939
14	Cinnyris minullus	17	2.15736
15	Cinnyris venustus	14	1.77665
16	Circus cyaneus	3	0.380711
17	Cocracias abyssinicus	7	0.888325
18	Corvinella corvina	5	0.634518
19	Crinifer zonurus	21	2.664975
20	Cypsiurus parvus	2	0.253807
21	Delichon urbica	3	0.380711
22	Dicrurus adsimilis	5	0.634518
23	Egrets ardesiaca	2	0.253807
24	Egretta alba	40	5.076142
25	Elanus caerules	11	1.395939
26	Eliminilongi cauda	1	0.126904
27	Elminia albventris	4	0.507614
28	Estrilda melpoda	12	1.522843
29	Euplectes hartlaubi	4	0.507614
30	Euplectes macrourus	11	1.395939
31	Ficedula albiventris	3	0.380711
32	Francolinus squamatus	2	0.253807
33	Gypohierax angolenisis	11	1.395939
34	Halycyon senegalensis	4	0.507614
35	Hedydipna platura	11	1.395939
36	Indicator indicator	3	0.380711
37	Kaupifalco monogrammicus	5	0.634518
38	Lagonosticta senegala	5	0.634518
39	Lamprotornis choloropterus	4	0.507614
40	Lamprotornis purpures	2	0.253807
41	Laniarus aethiopicus	$\frac{2}{2}$	0.253807
42	Laniarus poensis	4	0.507614
43	Lanius minor	3	0.380711
44	Logonisticta rufopicta	7	0.888325
45	Lunchura cucullata	82	10.40609
46	Malimbus erythrogaster	3	0.380711
47	Malimbus malimbicus	8	1.015228
48	Malimbus rubricollis	3	0.380711
49	Megacerlye maxima	10	1.269036
50	Melaenornis edolioides	3	0.380711
51	Milvus migrans	8	1.015228
52	Muscicapa adusta	2	0.253807
53	Musophaga rossae	3	0.233807
55 54	Musopnaga rossae Numida melagris	8	1.015228
55 55	Oxylophus jacobinus	8 25	3.172589
56	Phoeniculus purpureus	23	0.253807
50 57	Phyllastreplus poenensis	10	1.269036
58	Ploceus cuculatus	50	6.345178
59	Ploceus luteolus	20	2.538071
39	1 weens uneous	20	2.330071

60	Poicephalus senegalus	5	0.634518
61	Prodotiscus regulus	11	1.395939
62	Psalidoprocne nitens	8	1.015228
63	Pseudochelidon eurystomina	40	5.076142
64	Pycnontus barbatus	48	6.091371
65	Sagittarius serpentarius	3	0.380711
66	Stephanoaetus coronatus	2	0.253807
67	Streptopelia decipens	3	0.380711
68	Streptopelia semitorquata	17	2.15736
69	Streptopelia senegulensis	11	1.395939
70	Streptopelia vinacea	20	2.538071
71	Sylvia borin	11	1.395939
72	Treron calva	15	1.903553
73	Uraeginhus bengalus	17	2.15736
Total		788	100

Birds Species Richness, Diversity, and Evenness in Bodel Forest Reserve, GGNP

The Shannon-Weiner's and Simpson's indices result (Appendix II) shows a high population distribution of bird's species in the study area. This indicates that the savannah woodlands of GGNP is very rich in plant species and this is due to the availability of favourable climatic conditions, which attracted the diverse numbers of bird species inhabiting the ecosystems

In term of bird's species diversity in the study area, Shannon Weinner and Simpson indices gave a high value of 3.79 and 0.97 respectively, while, the value of the evenness of bird's species (Figure 4) gave a value of 1.79. This indicated that availability of good habitat and favourable climatic condition enhanced the bird's species diversity. This result is in accordance with Bibby *et al.* (2000) who also reported that good breeding sites, prevalence of variety of plant species promoted high diversity of bird's species in their study.

One of the most important factors observed in Bodel forest was the moderate levels of disturbances and the presence of arboretum, which influenced high population of some families of bird species like Estrildidae, Nectarinidae, and Ploceidaein the area. This may be due to the availability of different plant species, precisely fruits, seeds, leaves, grasses, and some insects and maggots in the arboretum, which also serves as a suitable feeding, nesting and breeding habitats for the migratory birds. This result is in line with Ezealor (2001), who reported almost 910 species of birds in a family of 90 in his study. Also, this study agrees with the findings of David and Parmelee (2013) in their study of the diversity of bird species and conservation carried out in two wetlands of Upper Benue River Basin (UBRB) in Adamawa State, Nigeria in which 53 and 55 bird families with 163 and 160 species were recorded in Kiri and Gyawana Lake respectively.

Comparison of Shannon-Weinner's and Simpson Diversity Indices

Presented in Table 3 is the t-test result for comparing the Shannon-Weiner's and Simpson index as a measure of bird's species diversity in Bodel Forest Reserve of GGNP. The result revealed that Shannon-Weinner index had a means of 0.051 and standard deviation of 0.043 respectively, while, Simpson's had a mean and standard of value 281.04 and 882.19 respectively. This indicated that Simpson is the best index to use when considering species diversity due to its higher mean value and standard deviation. Also, the t-test conducted further shows a high positive correlation coefficient (0.82) between the two indices compared. The significant relationship (p < 0.005) between the two indices indicated that both can be used to measure species diversity, although, Simpson's gives the best result.

Table 3: T-test for comparing Birds Species Diversity

Diversity Indices	Mean	N	Std. Deviation	Std. Error Mean	Correlation	Sig.
Shannon-	0.051	73	0.043	0.0051	0.822	0.0003
Weiner's						
Simpson	281.04	73	882.189	103.252		

CONCLUSION

The study has shown that Bodel Forest reserve of Gashaka Gumti National Park is capable of sustaining a large population of bird species, if human interference can be curtailed. The two indices compared for the assessment of bird's species diversity are good in measuring diversity in the study area, but Shannon-Weinner index is most prefer due to lower value of mean standard error as compared to Simpson's index. Since bird's are integral part of the ecosystem that occupy many tropic levels in a food chain ranging from producers to consumers, there occurrence should be protected and conserve as they are of helpful in environmental health indicator, pollinators, seed dispersal and as an agent of pest control.

REFERENCES

- Adebayo, A.A. and Zemba, A. (2020); Adamawa State in Maps. Paraclete publishers Yola, Nigeria.
- Altaf, M. (2016) Assessment of Avian and Mammalian Diversity at Selected Sites along river Chenab. Lahore-Pakistan: University of Veterinary and Animal Sciences, 2016.
- Bibby, C.J, Burgress, N.D and Hill, D. (2000) Birds Census Techniques 2nd Edition London, Academic Press, 2000, 24-41.
- Birdlife. (2004) State of the world's birds 2004. A report, 2004a.
- Blom, A. Van Zalinge and Mbea, E. (2004) Human impact on wildlife populations within a protected Central African forest. *African Journal of Ecology*. 2004;42:23e31.
- Boleli, I.C. and Queiroz, S.A. (2012) Effects of Incubation Temperature and Relative Humidity on Embryonic Development in Eggs of Red-Winged Tinamou (*Rhynchotus rufescens*). *International Journal of Poultry Science*. 2012;11:517-523.
- David, F. and Parmelee, A. (2013) Antartic Birds published by fish and wildlife service USA, 2013, 166-176.
- Develey, P.F. and Peres C.A. (2000). Resource seasonality and the structure of mixed species bird flocks in a coastal Atlantic Forest of Southeastern Brazil. *Journal of Tropical Ecology*. 2000;16:33-53.
- Ezealor, A.U. (2001) Important Bird areas in Africa and associated Island. Report by Nigeria Conservation Foundation (NCF) Lagos, Nigeria, 2001, 675-688.
- Galgani, F., Fleet, D.V. and Franeker, J. (2010) Marine Strategy Framework directive-Task Group 10 Report marine litter do not cause harm to the coastal and marine environment. Official Publications of the European Communities, 2010.
- Issa, M.A.A. (2019) Diversity and abundance of wild birds species' in two different habitats at Sharkia Governorate, Egypt. *Joournal of Basic and Applied Zoology*: **80**, 34 (2019). https://doi.org/10.1186/s41936-019-0103-5
- Magurba, B.L. (2002) National Parks and their Benefit to Local Communities in Nigeria, 2002.
- Mazumder MK. (2014) Diversity, habitat preferences, and conservation of the primates of Southern Assam, India: The story of a primate paradise. Journal of Asia-Pacific Biodiversity. 2014;7:347-354.
- Myers, J.H., Simberloff, D., and Kuris, A.M. (2000) Eradication revisited: dealing with exotic species. Trends in Ecology and Evolution. 2000;15:316-320.
- Noble, I., Parikh, J., Watson, R., Howarth, R., Klein, R.J.T. and Abdelkader, A. (2005). Climate
- Change. In: K. Chopra, R. Leemans, P. Kumar and H. Simons (Eds) Ecosystems and Human Well-Being: Policy Responses. Findings of the Responses Working Group of the Millennium Ecosystem Assessment. Island Press, Washington, DC, 2005.
- Pepeh, K.Y. and Nicholas, A. (2002) A Survey of African Wild Dog (*Lycoan pictus*) in Gashaka
- Gumti National Park, Nigeria. A report for GGNP, National Park Service, Nigerian Conservation Foundation and WWF. UK, 2002, 1-47.
- Peter, M.B. (2002) Evolutionary Ecology of Birds: Life Histories, Mating Systems and Extinction. Oxford University Press. Oxford University Press, 2002.
- Porter, W.P. and Gates, D.M. (1969) Thermodynamic Equilibria of Animals with Environment. *Ecology Monograph*. 1969;39:227-244.
- Püttker, T., de Amda Bueno, A. Prado, P.I. and Pardini, R. (2015) Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos. 2015;124:206-215.
- Runge, M.C. and Marra, P.P. 2005 Modeling seasonal interactions in the population dynamics of
- migratory birds. In Birds of two worlds: the ecology and evolution of migration (eds R Greenberg, PP Marra), pp. 375–389. Baltimore, MD: ohn's Hopkins University Press.
- Rushing, C.S. Ryder, T.B., Marra P.P. (2016) Quantifying drivers of population dynamics for a migratory bird throughout the annual cycle. Proc. R. Soc. B 283: 20152846.
- http://dx.doi.org/10.1098/rspb.2015.2846
- Santos, M.P.D. (2004) As comunidades de aves em duas fisionomias da vegetação de Caatinga no estado do Piaui, Brasil. 2004;12:113-123.

Lees, A.C., Naka, L.N., Alexio, M., Cohn-Haft, M., DE Placentini, V.Q. and Santos, M.P.D. (2014) Conducting Rigorous Avian Inventories: Amazonian Case Studies and a Road Map for Improvement. *Revista Brasileira de Omitologia* 22: 107 – 120.

Scanes, C.G. (2018) Human activity and habitat loss: destruction, fragmentation, and degradation. In: Animals and Human Society. *Elsevier*, 2018, 451-482.

Van Houtan, K.S., Pimm, S.L, Halley, J.M., Bierregaard, R.O.and Lovejoy, T.E. (2012) Dispersal of Amazonian birds in continuous and fragmented forest. Ecoloogy Letter. 2012;10:219-229.

Warren, Y. (2004) Olive Baboon (*Papio cynocephalus Anubis*): Behaviour, Ecology and Human Conflict in Gashaka-Gumti National Park, Nigeria. Ph.D Thesis submitted to the School of Human and Life Sciences, Roehampton University, London, UK, 2004.

Appendix I: Distribution of Birds Species In Bodel Forest Reserve of GGNP

S/No.	I	II	III	IV	V	VI
1		Agapornus	Crinifer		Pycnontus	Lunchura
	Eliminilongi cauda	pullarius	zonurus	Egretta alba	barbatus	cucullata
2	Baeopogon	Cinnyris	Chalcomitra	Pseudochelidon	Ploceus	
	indicator	cupreus	rubessers	eurystomina	cuculatus	
3		Elanus	Oxylophus			
	Buteo buteo	caerules	jacobinus			
4		Euplectes				
	Cypsiurus parvus	macrourus				
5		Gypohierax				
	Egrets ardesiaca	angolenisis				
6	Francolinus	Hedydipna				
	squamatus	platura				
7	Lamprotornis	Prodotiscus				
	purpures	regulus				
8	Laniarus	Streptopelia				
	aethiopicus	senegulensis				
9	Muscicapa adusta	Sylvia borin				
	Phoeniculus	Estrilda				
10	purpureus	melpoda				
11	Stephanoaetus	Arthreptes				
	coronatus	rectirostris				
12	Acrocephalus	Cinnyris				
	rufescens	venustus				
13	Bubulus ibis	Treron calva				
14	Centropus	Cinnyris				
	senegalensis	minullus				
15		Streptopelia				
	Circus cyaneus	semitorquata				
16		Uraeginhus				
	Delichon urbica	bengalus				
17	Ficedula					
	albiventris	Apus horus				
18		Ploceus				
	Indicator indicator	luteolus				
19		Streptopelia				
	Lanius minor	vinacea				
20	Malimbus					
	erythrogaster					
21	Malimbus					
	rubricollis					
22	Melaenornis					
	edolioides					
23	Musophaga rossae					
24	Sagittarius					
	serpentarius					

25	Streptopelia
	decipens
26	Elminia albventris
27	Euplectes
	hartlaubi
28	Halycyon
	senegalensis
29	Lamprotornis
	choloropterus
30	Laniarus poensis
31	Antichromus
	minutes
32	Corvinella corvina
33	Dicrurus adsimilis
34	Kaupifalco
	monogrammicus
35	Lagonosticta
	senegala
36	Poicephalus
	senegalus
37	Apalis nigriceps
38	Cocracias
	abyssinicus
39	Logonisticta
	rufopicta
40	Ati capilla
41	Malimbus
	malimbicus
42	Milvus migrans
43	Numida melagris
44	Psalidoprocne
	nitens
45	Megacerlye
	maxima
46	Phyllastreplus
	poenensis

Appendix II Species Frequency, Simpson's and Shannon-Weiner's Diversity Indices

S/No.	Species	Frequency	Pi	Lnpi	Shannon-Weiner's	Simpson's
1	Acrocephalus rufescens	3	0.003807	-5.57089	0.021209	6
2	Agapornus pullarius	11	0.013959	-4.2716	0.059629	110
3	Antichromus minutes	5	0.006345	-5.06006	0.032107	20
4	Apalis nigriceps	7	0.008883	-4.72359	0.041961	42
5	Apus horus	20	0.025381	-3.67377	0.093243	380
6	Arthreptes rectirostris	14	0.017766	-4.03044	0.071607	182
7	Ati capilla	8	0.010152	-4.59006	0.0466	56
8	Baeopogon indicator	2	0.002538	-5.97635	0.015168	2
9	Bubulus ibis	3	0.003807	-5.57089	0.021209	6
10	Buteo buteo	2	0.002538	-5.97635	0.015168	2
11	Centropus senegalensis	3	0.003807	-5.57089	0.021209	6
12	Chalcomitra rubessers	23	0.029188	-3.534	0.10315	506
13	Cinnyris cupreus	11	0.013959	-4.2716	0.059629	110
14	Cinnyris minullus	17	0.021574	-3.83628	0.082762	272
15	Cinnyris venustus	14	0.017766	-4.03044	0.071607	182
16	Circus cyaneus	3	0.003807	-5.57089	0.021209	6
17	Cocracias abyssinicus	7	0.008883	-4.72359	0.041961	42
18	Corvinella corvina	5	0.006345	-5.06006	0.032107	20
19	Crinifer zonurus	21	0.02665	-3.62498	0.096605	420
20	Cypsiurus parvus	2	0.002538	-5.97635	0.015168	2

			H = 3.79			D = 0.96
	TOTAL	788	3.793263			20516
73	Uraeginhus bengalus	17	0.021574	-3.83628	0.082762	272
72	Treron calva	15	0.019036	-3.96145	0.075408	210
71	Sylvia borin	11	0.013959	-4.2716	0.059629	110
70	Streptopelia vinacea	20	0.025381	-3.67377	0.093243	380
i9	Streptopelia senegulensis	11	0.013959	-4.2716	0.059629	110
8	Streptopelia semitorquata	17	0.021574	-3.83628	0.082762	272
7	Streptopelia decipens	3	0.003807	-5.57089	0.021209	6
5	Stephanoaetus coronatus	2	0.002538	-5.97635	0.015168	2
† 5	Sagittarius serpentarius	3	0.003807	-5.57089	0.021209	6
, 1	Pycnontus barbatus	48	0.060914	-2.7983	0.170455	2256
3	Pseudochelidon eurystomina	40	0.050761	-2.98062	0.1513	1560
2	Psalidoprocne nitens	8	0.013939	-4.2710 -4.59006	0.039629	56
1	Prodotiscus regulus	5 11	0.013959	-3.06006 -4.2716	0.032107	110
9	Ploceus luteolus Poicephalus senegalus	20 5	0.006345	-3.67377 -5.06006	0.093243 0.032107	380 20
			0.063452			
3	Ploceus cuculatus	50	0.063452	-2.75748	0.033418	2450
5 7	Phoeniculus purpureus Phyllastreplus poenensis	10	0.002538	-5.97635 -4.36691	0.015168	90
	Phoeniculus purpureus	25	0.002538	-5.43062 -5.97635	0.109474	2
;	Oxylophus jacobinus	25	0.031726	-3.45062	0.109474	600
, ļ	Numida melagris	8	0.010152	-4.59006	0.021209	56
<u>:</u> }	Muscicapa adusta Musophaga rossae	3	0.002538	-5.97635 -5.57089	0.015168	6
! <u>2</u>	Milvus migrans Muscicana adusta	2	0.010152	-4.59006 -5.97635	0.0466	2
	Melaenornis edolioides	3 8	0.003807 0.010152	-5.57089 -4.59006	0.021209 0.0466	6 56
)	Megacerlye maxima		0.01269	-4.36691 5.57080	0.055418	
		10				90
3	Malimbus malimoleus Malimbus rubricollis	3	0.003807	-4.59006 -5.57089	0.0466	6
,	Malimbus erythrogaster Malimbus malimbicus	8	0.010152	-3.57089 -4.59006	0.021209	56
, i	Malimbus erythrogaster	3	0.003807	-5.57089	0.021209	6
i	Lunchura cucullata	82	0.104061	-2.26278	0.235467	6642
	Logonisticta rufopicta	7	0.008883	-4.72359	0.041961	42
	Lanius minor	3	0.003807	-5.57089	0.021209	6
2	Laniarus poensis	4	0.005076	-5.2832	0.026818	12
, I	Laniarus aethiopicus	2	0.002538	-5.97635	0.015168	2
,)	Lamprotornis purpures	2	0.002538	-5.97635	0.015168	2
)	Lamprotornis choloropterus	4	0.005076	-5.2832	0.026818	12
3	Lagonosticta senegala	5	0.006345	-5.06006	0.032107	20
, 7	Kaupifalco monogrammicus	5	0.006345	-5.06006	0.032107	20
5	Indicator indicator	3	0.003807	-5.57089	0.021209	6
5	Hedydipna platura	11	0.013959	-4.2716	0.059629	110
4	Halycyon senegalensis	4	0.005076	-5.2832	0.026818	12
3	Gypohierax angolenisis	11	0.002338	-4.2716	0.059629	110
2	Francolinus squamatus	2	0.002538	-5.97635	0.021209	2
0 1	Euptectes macrourus Ficedula albiventris	3	0.013959	-4.2716 -5.57089	0.039629	6
0	Euplectes nartiaubi Euplectes macrourus	4 11	0.003076	-5.2832 -4.2716	0.026818	110
8 9	Estrilda melpoda Euplectes hartlaubi	4	0.015228 0.005076	-4.18459 -5.2832	0.063725 0.026818	132
7 •		4 12				12
5 7	Eliminilongi cauda Elminia albventris	1 4	0.001269 0.005076	-5.2832	0.008464	12
				-6.6695	0.008464	0
4 5	Egretta alba Elanus caerules	40 11	0.050761 0.013959	-2.98062 -4.2716	0.1513 0.059629	110
3	Egrets ardesiaca	40	0.002538	-5.97635	0.015168	1560
	Dicrurus adsimilis	5 2	0.006345	-5.06006	0.032107	20 2
!						

H = Shannon-Weiner Index; D = Simpson's Index